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Abstract An efficient, facile, and mild oxidation of alcohols

to the corresponding aldehydes or ketones with potassium

peroxodisulfate and 2,2,6,6-tetramethylpiperidinyl-1-oxy in

the presence of a catalytic amount of iodobenzene is reported.

The oxidation proceeded in a mixed solvent to afford carbonyl

compounds in moderate to excellent yields. A possible

mechanism for the oxidation is proposed.
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Oxidations � TEMPO

Introduction

The selective oxidation of alcohols to the corresponding

carbonyl compounds is a fundamental transformation in

both laboratory synthesis and industrial production [1–3].

Numerous hypervalent iodine compounds, e.g., 1,1,1-triace-

toxy-1,1-dihydro-1,2-benzodoxol-3H-one (DMP), 1-hydroxy-

1,2-benzodoxol-3H-one 1-oxide (IBX), PhI(OAc)2, and

PhIO, in stoichiometric amounts have been traditionally

employed to accomplish this transformation [4, for reviews

see 5–10]. However, some of these reagents are potentially

explosive, and use of stoichiometric amounts of iodine

reagents leads to the production of equimolar amounts of

organic iodine waste. From economic and environmental

perspectives, the development of catalytic systems based on

hypervalent iodine has received great attention (for reviews

see [11–15]). Many highly efficient systems have been

developed for catalytic hypervalent iodine oxidation using

co-oxidants such as m-chloroperbenzoic acid (mCPBA)

[16–28], oxone (2KHSO5�KHSO4�K2SO4) [29–36], H2O2

[37, 38], tetraphenylphosphonium monoperoxysulfate

(TPPP) [39], NaBO3�H2O [40], O2 [41], Ru [42], peracetic

acid [43], or combinations with the nitroxy radical 2,2,6,6-

tetramethylpiperidinyl-1-oxy (TEMPO) [44]. To the best of

our knowledge, there is no report on the use of K2S2O8 as

co-oxidant for catalytic hypervalent iodine oxidation. The

advantages of using K2S2O8 are due in part to its stability,

nontoxic nature, low cost, and easy and safe handling.

On the other hand, it is well known that nitroxyl radicals

such as TEMPO and N-hydroxyphthalimide (NHPI) pro-

mote oxidation of various alcohols to the corresponding

carbonyl compounds effectively under mild reaction

conditions (for reviews see [45–48]). Piancatelli and

co-workers have reported a mild and selective method for the

oxidation of primary and secondary alcohols using TEMPO

and stoichiometric bis(acetoxy)iodobenzene [PhI(OAc)2] as

a reoxidant [49].

In continuation of our interest in exploring systems for

the oxidation of organic compounds [50–53], we report

herein a facile procedure for the oxidation of alcohols to

the corresponding carbonyl compounds with K2S2O8 in the

presence of CF3COOH, catalytic amounts of PhI, and

TEMPO (Scheme 1).

Results and discussion

Initial experiments were carried out using 4-nitrobenzyl

alcohol as the model substrate. When 4-nitrobenzyl alcohol

was oxidized with K2S2O8/PhI/CF3COOH/TEMPO in

MeCN/H2O at 40 �C for 4 h, 92% conversion of the

alcohol and 98% selectivity to the corresponding aldehyde

were observed (Table 1, entry 1). However, in the absence
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of H2O the conversion of the alcohol was decreased to 71%

(Table 1, entry 2). This result suggests that the presence of

H2O as a co-solvent is beneficial for the dissolution of

K2S2O8. As control experiments, the same reaction was

carried out in the absence of TEMPO, CF3COOH, K2S2O8,

or PhI. In all cases, the conversion of the alcohol was much

lower (Table 1, entries 3–6). It was possible to decrease

the amount of PhI to as low as 0.05 equivalent without

significant loss in catalytic efficiency (Table 1, entry 7).

Use of other acids or anhydrides instead of CF3COOH in

this reaction was not successful (Table 1, entries 8–10).

Moreover, a range of additives were tested for this reaction.

However, all of them were unsatisfactory except for

TEMPO (Table 1, entries 10–13). Besides, we also tested

other co-oxidants such as NaBO3�H2O, NaIO4, urea

hydrogen peroxide adduct (UHP), and Na2CO3�3H2O2 in

this experiment, all of which were not successful.

In order to evaluate the versatility of this novel catalytic

system, we applied the procedure to the oxidation of a wide

range of alcohols, including benzylic, allylic, heterocyclic,

and aliphatic alcohols. As shown in Table 2, most alcohols

underwent oxidation to afford the corresponding aldehydes

or ketones in excellent yield. The present protocol afforded

aldehydes from primary alcohols (Table 2, entries 1, 2, 3,

4, 8, 11, and 13) and ketones from secondary alcohols

(Table 2, entries 5, 6, 9, and 12). For the oxidation of

primary alcohols, no noticeable overoxidation of aldehyde

to carboxylic acids was detected. Benzylic alcohols

underwent smooth oxidation (Table 2, entries 1–6). An

allylic alcohol, cinnamyl alcohol (Table 1, entry 7), was

also oxidized efficiently without any observable reaction at

the double-bond functionality. Even for the oxidation of

furan-2-ylmethanol an excellent yield was also obtained

(Table 1, entry 10). The electronic properties of the sub-

stituents in the aromatic ring had remarkable influence on

the rate of the oxidation of alcohols. Strong electron-

withdrawing groups, e.g., a nitro group, lowered the reac-

tion rate (Table 2, entry 2). Strong electron-donating

groups, such as a –OCH3 group, accelerated the oxidation

(Table 2, entry 3). Use of the present procedure for the

oxidation of aliphatic alcohols under the same conditions

gave moderate yields (61–77%) in prolonged reaction

times (Table 2, entries 8, 11, 12, and 13). In view of the

fact that the oxidation of aliphatic alcohols is much more

difficult than the oxidation of benzylic alcohols, results

obtained with the present procedure were also satisfactory.

Table 3 shows the results of the competitive oxidation

of primary and secondary alcohols. The competing oxida-

tion of an equimolar mixture of benzyl alcohol and

1-phenylethanol resulted in a 93% yield of benzaldehyde

and less than 5% yield of acetophenone (Table 3, entry 1).

Oxidation of an equimolar mixture of octan-1-ol and octan-

2-ol gave 67% caprylic aldehyde, whereas no ketone could

be detected (Table 3, entry 2). These results suggest that

chemoselective oxidation of primary alcoholic functional-

ity in the presence of secondary alcoholic functionality is

possible with the present oxidation system.

Recently, Kitamura and co-workers reported a facile

experimental procedure for the direct preparation of

ArI(OCOCF3)2 from the respective iodoarenes in CF3COOH,

using potassium peroxodisulfate (K2S2O8) as the oxidant

(Scheme 2) [56]. Inspired by the preliminary research, in

our present procedure, PhI and CF3COOH may be initially

oxidized by K2S2O8 to form the highly reactive hyperva-

lent iodine(III) compound PhI(OCOCF3)2. The role of

PhI(OCOCF3)2 is to regenerate TEMPO from TEMPOH,

then TEMPO is responsible for the actual oxidation in this

reaction to oxidize alcohols to the corresponding aldehydes

or ketones. A plausible mechanism for this reaction is

depicted in Scheme 3.

In conclusion, a novel and mild catalytic system for the

oxidation of alcohols to the corresponding aldehydes or

R1 R2

OH         K2S2O8/CF3COOH
         cat. PhI, TEMPO

MeCN/H2O(4:1 v/v) 40 R1 R2

O

+ H2O R1= aryls, alkyls
R2= aryls, alkyls, H

oC

Scheme 1

Table 1 Oxidation of 4-nitrobenzyl alcohol

Entry PhI

(equiv)

K2S2O8

(equiv)

Acid Additive Conv./sel.

(%)a

1 0.1 3 CF3COOH TEMPO 92/98

2b 0.1 3 CF3COOH TEMPO 71/99

3 0.1 3 CF3COOH None 21/63

4 0.1 3 None TEMPO 36/96

5 0.1 None CF3COOH TEMPO \10/–

6 None 3 CF3COOH TEMPO 33/90

7 0.05 3 CF3COOH TEMPO 90/99

8 0.1 3 AcOH TEMPO \10/–

9 0.1 3 HCl TEMPO \10/–

10 0.1 3 (CF3CO)2O TEMPO 54/93

11 0.1 3 CF3COOH NHPI 88/59

12 0.1 3 CF3COOH BF3�Et2O \10/–

13c 0.1 3 CF3COOH 3 Å MS \10/–

Reactions were performed by using 1 mmol 4-nitrobenzyl alcohol,

3 mmol K2S2O8, 1 cm3 acid, 0.2 mmol additive, and 0.1 mmol PhI in

MeCN/H2O (4 cm3/1 cm3) at 40 �C for 4 h unless otherwise noted
a GC conversion and selectivity
b Without H2O
c 0.1 g 3 Å molecular sieve was added
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Table 2 K2S2O8/PhI/TEMPO

catalyzed oxidation of alcohols

Reaction conditions: 1 mmol

alcohol, 3 mmol K2S2O8,

0.1 mmol PhI, 1 cm3

CF3COOH, 0.2 mmol TEMPO,

MeCN/H2O (4 cm3/1 cm3),

40 �C
a Yields of isolated products

unless otherwise noted
b Yields were determined by

GC
c References for isolated

products

Entry Alcohols Products Time (h) 
Yielda

(%)
Ref.c

1
OH O 1 95 [54a, 55a] 

2
OH

O2N
4 90 [54b, 55b] 

3
OH

MeO
2 97 [54c, 55c] 

4
OH

Cl
4 91 [54d, 55d] 

5 OH O 2.5 93 [54e, 55e] 

6

OH O

5 96 [54f, 55f] 

7 5 92 [54g, 55g] 

8
OH

8 77 [54h, 55h] 

9 OH O 8 71b [54i, 55i] 

10
O

OH
O

O 5 88b [54j, 55j] 

11 CH3(CH2)7OH CH3(CH2)6CHO 12 75b [54k, 54k] 

12
( )4

OH

( ) 4

O
12 70b [54l, 55l] 

13 n-C11H23-CH2OH n-C11H23-CHO 12 61b [54m, 55m] 

O

O2N

O

MeO

O

Cl

OH O

O

Table 3 Competitive oxidation

of primary and secondary

alcoholsa

Reactions were carried out on a

1:1 mixture of primary and

secondary alcohols, on a

1 mmol scale
a GC yield

Entry Substrate Product Time (h) Yielda (%) 

1

O

1

93

OH O <5

2

CH3(CH2)7OH CH3(CH2)6CHO

8

67

()4

OH

()4

O
not detectable 

OH
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ketones with K2S2O8/PhI/TEMPO was developed. PhI was

oxidized by K2S2O8 in situ to highly active hypervalent

iodine(III) species, a reoxidant of TEMPO, which allowed

the oxidation of various kinds of alcohols, including ben-

zylic, alicyclic, heterocyclic, and aliphatic alcohols to

afford carbonyl compounds in moderate to excellent yields.

The procedure can be used for the synthesis of aldehydes

from primary alcohols or ketones from secondary alcohols.

Selective oxidation of primary alcohols in the presence of

secondary alcohols was also achieved.

Experimental

All chemicals (AR grade) were obtained from commercial

resources and used without further purification. Products

were all known compounds and were identified by com-

paring their physical and spectroscopic data with those

reported in literature. Gas chromatography (GC) analysis

was performed on an Agilent GC-6820 chromatograph

equipped with a 30 m 9 0.32 mm 9 0.5 lm HP-Innowax

capillary column and a flame ionization detector. Progress

of the reactions was followed by TLC (petroleum ether/

ethyl acetate/acetate acid = 5/15/1) using silica-gel poly-

grams SIL G/UV 254 plates. Mass spectra were recorded

on a Shimadzu GC MS-QP 1000 EX apparatus.

Typical experimental procedure for oxidation

of alcohols

To a mixture of 1 mmol alcohol, 20 mg iodobenzene

(0.1 mmol), 31 mg TEMPO (0.2 mmol), 1 cm3 CF3COOH,

4 cm3 MeCN, and 1 cm3 H2O was added 810 mg K2S2O8

(3 mmol). The mixture was stirred at 40 �C for several

hours while checking the reaction progress by gas or thin-

layer chromatography. After completion, aqueous sodium

thiosulfate and ether were sequentially added to the residue,

and then the mixture was stirred vigorously for 10 min. The

organic layer was separated, and the aqueous layer was

extracted with ether. The combined ether phase was con-

centrated under vacuum. The crude product was purified

by column chromatography (petroleum ether/ethyl ace-

tate = 10/1) to provide the analytically pure product. The

identity of products was determined either by comparison

with authentic samples using gas chromatography or by GC/

MS analysis.
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